
UNUSUAL OPERATORS

Useful, but no analog in mathematics

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Unusual operators are not necessarily uncommon, they just don't have an every-day analogue like addition and subtraction.



AUTO INCREMENT & AUTO DECREMENT

• Unary operators; each operand must be a variable

• Four operators:

• pre-increment (++v) post-increment (v++)

• pre-decrement (--v) post-decrement (v--)

• Order of operation only important when auto the operation is embedded in a 
more complex expression

• v++; is the same as ++v;

• x = v++; is different than x = ++v;

• The difference is order in which we “use the stored value” compared to when 
the increment or decrement takes place

Presenter
Presentation Notes
Auto increment and auto decrement make frequent appearances in C++ programs. Altogether, there are four variations of these operators. Each variation is a unary operator and is different than the operators illustrated previously in that the single argument must be a variable (again, this requirement is slightly over simplified but not by much).The behavior of the auto operators depends on which side of the variable they are placed. Placing the operators on the left side implements the pre version while placing the operators on the right side implements the post version. The combination of increment vs. decrement and pre vs. post give the four variations.If these operations are by themselves in a statement (e.g., ++v; or v++;) then there is no difference between the pre and post versions - they both increment the value stored in v. The difference is only manifest when the operations are embedded in more complex statements. In that case the difference between the versions hinges on the order of "using" the value in the variable verses when the value is changed.



AUTO OPERATORS CONTINUED

x = 10;

Operator Meaning Result

a = x++; a = x; a == 10
x = x + 1; x == 11

a = ++x; x = x + 1; a == 11
a = x; x == 11

a = x--; a = x; a == 10
x = x - 1; x == 9

a = --x; x = x - 1; a == 9
a = x; x == 9

Presenter
Presentation Notes
The easiest way to see the difference between the pre and post versions is to deconstruct the behavior of the operators and present them as two separate operations. The first column shows a C++ statement as it might appear in a program. The second column shows what the statement means or how it behaves by deconstructing the statements into two separate operations. Note that the only difference between the pre and the post versions is the order in which the deconstructed operations take place. The last column presents the final results of the statements appearing in the first two columns.



OPERATION WITH ASSIGNMENT

• Just a shortcut

• Left hand operand must be a variable

• op= (+=, -=, *=, /=, %=, ~=, <<=, and >>=+)

• x += 10; x = x + 10;

• i =- 10; i = i – 10;

• a /= b; a = a / b;

• x *= 2; x = x * 2;

• index %= size; index = index % size;

Presenter
Presentation Notes
Operation with assignment is available with many of the "normal" operators and is nothing more than a shorthand notation. For example, x += 10; is just a compact way or writing x = x + 10; While the right hand operand can be any arbitrary expression, the left hand operand must be a variable.



CONDITIONAL OPERATOR

• Behaves much like an if-else statement, but forms an expression (i.e., has a value)

• ex1 ? ex2 : ex3

• if ex1 is true (i.e., not 0), the value of the expression is ex2

• if ex1 is false (i.e., 0), the value of the expression is ex3

• Examples

• min = (x < y) ? x : y

• max = (x > y) ? x : y;

• z = (x > y) ? (x + 10) : (y – 10);

Presenter
Presentation Notes
The conditional operator is C++'s only ternary (i.e., three operand) operator. It behaves very much like and if-then-else statement except that it forms an expression - that is, it results in a value. If the first expression produces a "true" value, then the value of the overall expression is the value of the middle expression. If the first expression produces a "false" value, then the value of the overall expression is the value of the last or right most expression. If any sub-expression is more complicated than a constant or a single variable, then it is typically enclosed in parentheses to avoid any precedence conflicts.In the last example, if x is greater than y, then we store x + 10 in z; if x is less than or equal to y, then we store y - 10 in z.



sizeof

• Calculates the size, measured in bytes, of a constant, a variable or a data type

• type must be enclosed in parentheses

• constants and variables may be in parentheses or not

• easiest for me to remember to just us parentheses

• sizeof(int)

• sizeof(double)

• sizeof(5) sizeof 5

• sizeof(x) sizeof x

Presenter
Presentation Notes
The sizeof operator is strange in that it is evaluated by the compiler before the program runs; that is, the compiler replaces the operator and its operand with a constant value as a part of the compilation process.sizeof returns the size of a data type or of a specific variable or constant. The size is always measured in the number of bytes that the type or variable occupies in memory.When applied to a data type, parentheses are always required, but when applied to a constant or to a variable, the parentheses are optional. I find it easier to always use the parentheses than trying to remember when they are required and when they are not.


	Unusual Operators
	Auto Increment & Auto Decrement
	Auto Operators Continued
	Operation With Assignment
	Conditional Operator
	sizeof

